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Abstract— Music genre classification is a vital componentof
the music information retrieval system. There are wo important
components to be considered for better genre clafisation, which
are audio feature extraction and classifier. This pper
incorporates two different kinds of features for gare classification,
timbral texture and rhythmic content features. Timbral texture
contains the Mel-frequency Cepstral Coefficient (MEEC) with
other several spectral features. Before choosingtanbral feature
we explore which feature contributes a less signdant role on
genre discrimination. This facilitates the reductimm of feature
dimension. For the timbral features up to the 4-thorder central
moments and the covariance components of mutual feaes are
considered to improve the overall classification meult. For the
rhythmic content the features extracted from beat stogram are
selected. In the paper Extreme Learning Machine (EM) with
bagging is used as the classifier for classifyingé genres. Based on
the proposed feature sets and classifier, experimen are
performed with two well-known datasets: GTZAN and the
ISMIR2004 databases with ten and six different musi genres,
respectively. The proposed method acquires better nd
competitive classification accuracy compared to theexisting
approaches for both data sets.

Keyword— Classification, music genres, ELM (Extreme
Learning Machine) with bagging, covariance matrix, timbral
texture, rhythmic contents

I. INTRODUCTION

attracting the attention of a growing number ofesgshers,
musicians, and composers. A current challengingctap
automatic music information retrieval is the prableof
organizing, describing, and categorizing music ept# on the
internet [1]. Although music genre classificatioa done
manually, sometimes it is difficult to preciselyfide the genre
of music content. The reason for such difficulislue to fact
that music is a state of art that evolves, wherapmsers and
musicians have been influenced by the music ofrageares.
Despite these difficulties, there are still somegiloilities that
remain for genre classification. The audio signaflsmusic
belonging to the same genre mean they share thaircer
common characteristics, because they are compdsgahitar
types of instruments, having similar rhythmic patte and
similar pitch distributions [2]. The extracted fe@ts must be
comprehensive (representing music very well), carhpand
effective.

The overview of our music genre classificationtiswn in
Fig.1. It depicts the backbone of genre categddmat here are
two associated problems that need to be addressegénre
classification, i.e., feature extraction and cléssiion. The first
stage is to extract the meaningful and relevaniufea from
audio that could sufficiently discriminate the ntugenre. The
next stage is to classify the genre based on thact&d features.
In our method the extreme learning machine (ELMybimed
with bagging is used as a classifier. Several lodigjse dataset

TUTOMATIC music genre classification is an important for thare constructed and each bag is trained usingidwdiVELMs.

information retrieval task since it can be applifmt
practical purposes such as efficient organizatidndata
collections in the digital music industry. Therevaabeen
several well-known distinct approaches put forward this.
Still, efficient and accurate automatic music imfiation
processing remains as the key issue, and it hasdmesistently
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The final decision is made based on the majorityngoscore.
ELM is an unstable classifier, therefore ELM congainwith
bagging increases the stability, as well as geizatain
performance of the classifier.

For constructing a robust music genre classifigraeting
features that allows direct access to the relegante-specific
information is crucial. Most musical genre clagsifion
systems utilize the low-level spectral featureshef short time
audio signal in the range of 10ms to 100ms, suclpitah
extraction, mel-frequency cepstral coefficients @&s), and
other timbral texture features [3]. Then the shione low-level
spectral features are integrated long duration. The most
widely used integrating method is mean and standavihtion
of the short time feature [4, 5].

In this paper, we attempt to implement timbral teet
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rhythmic content features like beat histogram wihiepresent
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the long-term properties. Timbral texture featuiaslude

spectral centroid, flux, rolloff, flatness, ener@gro crossing,
and MFCCs, respectively. We divide the timbral teet
features into two groups for convenience; the firsup (FG1)
does not include MFCCs and the second group (St&R)des
only MFCCs. After the frame-wise extraction of eathbral

texture feature among FG1 from all genres of mubie,next
stage is to calculate the standard deviation fbgahres of
music. The aim of calculating the standard dewvmafmr each
feature in whole genres is to find out which featus

insignificant for genre discrimination. The featwvhich has a
small value of standard deviation contributes tsginificant
impact on genre discrimination. Based on the stahdaviation
value, we considered a limited number of timbrakdees.

A Similar procedure has been preceded for the SGIECC
features as well. Out of thirteen, twelve coefintge give
meaningful standard deviation values. This shows tivelve
MFCC coefficients are meaningful for genre classifion. For
our experiment, we consider both the first seved &velve
coefficients separately for genre classification.

Timbral texture features are based on short timelével
spectral components that are integrated on longtidur. The
integration method is mean and standard devialBeside this,
high order moments such as skewness and kurtosislso
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Fig.1. Overview of music genre classification

beat histogram. Rhythmic content features contaiative
amplitude of the first and second histogram pepksiod of
first and second peaks, ratio of the amplitudénefdecond peak
divided by the amplitude of first peak, and oveslin of the
histogram.

There are different types of classifiers which hdgen
proposed for genre classification. We prefer thsetimiit
classifier than the previously applied one. Extremearning
Machine (ELM) is a recently proposed classifierethinas high
generalizing capability and takes minimum time fi@ining.
The reason for selecting ELM is that it does nguiee a tuning
parameter, has the smallest training error, arfickésfrom the
local maxima problem. However, ELM is unstable heseathe
weights connected with hidden units are randomtgrmened.
Therefore, we combine ELM with bagging in ordeirtorease
the stability. Bagging is almost always more actuthan a

implemented for integratindpe frame-wise features. The aim ofsingle classifier. Other classifiers like K-Neard&ighbour

considering the high order moment is that evehefe are the
same values of mean and standard deviation, thidquosf
location (shape of skewness and kurtosis posittmijld be
different because each feature cannot be modelledhé
Gaussian distribution.

Ultimately, the high order moment increases
classification accuracy when it is combined withestlow level
spectral features. It generally provides the supplgary
statistical information for the audio signal. Skess is a
measure of the asymmetry of the data distributegarding the
sample mean, which represents the relative dispnsitf the
tonal and non-tonal components of the audio sidfaftosis is
the measure for the degree of peakedness or fatoks
distribution [6]. Therefore we have consideredcdmponents
for then texture features.

In addition we propose to use the covariance compisnof
mutual timbral texture features. Each of them githe
statistical property of mutual random variablesoagded
features. For each song the covariance values lettsd
features from FG1 and SG2 are calculated, respbgtiv
Therefore, additionah(n-1)/2 components are included for
timbral texture features.

Note that we can haven4 n(n-1)/2 for n features, which
increases rapidly as the number of features inesdshis is the
reason why we remove the relatively less imporaatures by
checking the corresponding variances.

Rhythm is a property of an audio signal that repmés a
changing pattern of timbral and energy over timbytRmic
features characterize the movement of music signads time
and contain such information as the regularityhef thythm,
beat, tempo, and time signature. The feature se¢fwesenting
the rhythmic structure is based on detecting thetmalient
periodicities of the signal and it is usually exted from the

(K-NN), Neural Networks (NN) have some drawbackscése
of neural network, when learning rate is too snta#,algorithm
converges very slowly. It also requires a tuningapeeter and
probably faces the local maxima problem. K-Neak&sghbour
is a simple nonparametric classifier. It is prottest the error of

th&-NN'’s is twice large than Bayesian error rate.

This paper is organized as follows. A review oatetl work
is provided in section Il. Feature extraction is thitical portion
of genre classification; and is describes in sadfio Section IV
deals with the classifier, similarly section V eaxipls the
experimental setup and data preparation, and sectib
explains the result and analysis. Finally, sectithdescribes
the conclusion of the proposed method and futunk w6 the
genre.

Il. RELATED WORK

Many different features have been introduced forsimu
genre classification. The primary aim of featur&aotion is to
acquire a meaningful representative part of musibe reduced
form. The acoustic features include tonality, pitbeat, and
symbolic features extracted from the scores, amttbesed
features can be obtained from the song lyricshik paper, we
only focus on timbral texture and rhythmic contertich are
sub-groups of content-based features.

The content-based acoustic features are dividedtimibral
texture features, rhythmic content features, anchptontent
features [7]. Timbral features are often calculated every
short-time frame of sound based on the Short Tiroerier
Transform (STFT) [8]. Timbral texture features @ntMFCCs,
spectral centroid, spectral flathess, spectral #pectral rolloff,
zero crossing, energy, and Linear Prediction Coiefiits (LPCs)
[7, 8]. These features are widely used in differgoplications
based on the requirement of applications. MFCCs Hzeen
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extensively used in speech recognition [8]. LateCC
features are used for discriminating the music sppeech as
well. Rhythmic content features possess informatadrout
continuity of rhythm, beat and tempo. Tempo and breaking

are excessivelysed in music search and retrieval systems. Tt

tempo value is a number which represents the spie@dsic or
music measured by beats per minute (bmp) [9, 16& fitch
content feature deals with frequency informatiomoisic.

Bergstra et al. [11] extracts the several timbetture
features like MFCCs, spectral centroid, spectnat,flspectral
rolloff, zero crossing, energy, and Linear Predicti
Coefficients. These features are almost similéin tie features
used in [3, 5]. AdaBoost is used as a classifier.

C.-H. Lee et al. [12] considers the Octave-Basedc8al
Contrast (OSC) and MFCC for feature extraction. réhs a
range of nine different frequencies in octave-baspectral
contrast.
Discriminant Analysis (LDA). Recently, Seo et H3] also
implemented the Octave-Based Spectral Contrast JG&C
feature extraction. Beside this, he consider thgh horder
moment for improving the performance of classifimat
accuracy. The genre classification is performed usyng
Support Vector Machines (SVM).

Li et al. [1] mention several audio feature exfi@ct
methodologies. Later, he proposed a new approacfedture
extraction, i.e. Daubechies Wavelet Coefficientstbtirams
(DWCHSs). The effectiveness of this new featureampared
using various machine learning algorithms, SVMsu$3#an
Mixture Models (GMMs), K-NNs, and LDAs.

The spectral similarity of the timbral texture fe@ is
described by Pampalk et al. [14]. The audio sigmahopped
into thousands of very short frames and their orddmme is
ignored. Each frame is described by MFCCs. Theelaet of
frames is summarized by a model obtained by clingiethe
frames. The distance between two pieces is comphted
comparing their cluster models. Later, GMM is cdesed for
genre classification.

Tzanetakis and Cook [7] proposed a comprehensivefse
features for direct modelling of music signals axglore the
different applications of those features for musiganre
classification using K-Nearest Neighbor and GMM.hét
researchers like Lambrou et al. [15] use statistézdures in the
temporal domain as well as three different wavetesform
domains to classify music into rock, piano, and j8pltau et al.
[16] propose an approach of representing temptnadtsires of
input signals. He shows that this new set of abstemtures can
be learned via artificial neural networks and canused for
music genre identification. Deshpande et al. [15§ Gaussian
Mixtures, SVM, and K-Nearest Neighbor to classHg music
into rock, piano, and jazz based on timbral texfeegures.

Feature extraction encompasses the analysis anactaen
of meaningful information from audio in order totaim a
compact and concise description that could be meaigiadable.
Features are usually selected in the context péeific task and
domain. The features that are used in our reseaekivided

FEATURE EXTRACTION

Music genres are classified by using afine
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Fig. 2. Overview of Timbral texture features egtran of audio.
into two categories, the timbral texture featurel ahythmic
content feature.

A. Timbral Texture features

These features are used to differentiate mixtusmohds that
possibly have similar pitch and rhythm [8]. Thettgas used to
represent timbral texture are based on standarturésa
proposed for music-speech discrimination [18]. ktract the
timbral features, audio signals are first dividatbiframes by
applying a windowing function at fixed intervalshd window
function of this research is hamming window whialps to
remove the edge effects. Timbral texture featurdsig.2 have
been computed and later we calculated differentisttal
values like mean, standard deviation, skewnesgosisr and
covariance matrix from feature values. The mean and
standard deviations] for frame-wise feature valuexjin aN
-frame song argiven by

1 N
Mean(u) = N nz:1 Xn 1)

1N 2

Std(0) == X (Xq = 4) @
N n=1

The skewness is a measure of asymmetry of thehdison,

which can represent the relative disposition of titveal and

non-tonal components of each band. If the tonal pgmmants

occur frequently in a band, the distribution ofdpectrum will

®3)

Kurtosis is a measure of whether the data are jpeakéat
relative to a normal distribution. That is, datasseith high
kurtosis tend to have a distinct peak near the meandifficult
to specify the exact contribution of kurtosis in situgenre
classification [13]. However, the kurtosis measca@ sketch
the effective dynamic
Mathematically it can be defined as

be left-skewed otherwise it will be right-skewed.
Mathematically, the skewness in a song can be elgfirs
N 3
2 (Xp —H)
Skewness ”:173
(N-1)o
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N 4 1 N
2 (Xy—H) Zt =7 2 [sgn(x(nl = sgt X n=1| 9)
Kurtosis= """, -3 (4) =l . . _ .
(N-1)o where sgn is a short notation of sign function. $ge function

Covariance is measured between two random variairlesiS 1 for positive arguments and O for negative argpts and

features. The aim of considering the covarianesiglly to see X[l is the time domain for signal for frame t. ,
if there is any relationship between the randoniabdes. It is Spectral Rolloffit is a measure of the bandwidth of the audio

signal. It is the fraction of bins in the power sfpem in which

useful to measure the polarity and the degreeettirelation ; .
85% of the power is at lower frequencies.

between two features. The covariance of two featifandy,
in a song is given as

N
1 N >, M¢[n] =0.85% M[n] (10)
CoMX,, )=y Z (Xnt s s ™ =i

whereM{[n] is the magnitude of the Fourier transform at fedm
and frequency bin.

i i _ Spectral flatnesdt is used to characterize an audio spectrum.
respectively. Forn timbral texture features we acquiredgpectral flatness is typically measured in decikeisl provides

where Hy and Uy are corresponding means ¥f and Y, ,

n(n-1) / 2mutual covariance values. a way to quantify how tone like a sound is, as Gegcto being
We consider two groups of timbral texture featuf€s and noise-like.
SG2 described as 1 N-1
1) FGL1 features exp[ > Inx(m)j
Spectral flux:It is defined as the variation value of thefg = m=0 11
spectrum between the adjacent two frames in a -sinoet 1 Nz_l
analyze window. It measures how quickly the povescsrum N nEo0 X(m)

changes and is used to determine the timbral afidio signal. wherex(m) represents the magnitude of bin numiper

_ _ 2 rom the above mentioned features in FG1, the riarech
R = nz:l(Nt[n] N 1) (6) standard deviation of all the data has been catmlilsince the
standard deviation generally depends on the meére vVa

where NJn] and N;3[n-1] are normalized magnitudes of the Y HERETES )
general, the standard deviation is divided by apoading

Fourier transform at the present fratnand previous framel . _
. mean to find out the less important features. Nl a smaller
respectively. e :
. Sy . value of the standard deviation means a smallengghén the
Spectral centroidThe spectral centroid is described as the L .
: : o Values of the frame-wise timbral texture featudgisTneans any
gravity centre of the spectral energy. It detemsithepoint in

) . derived central moments from the feature and theartance
the spectrum where most of the energy is concewtrand is . , L I :
. . X . with the feature is not significant for the discimation of music
correlated with the dominant frequency of the sigtiais

. . enres. Therefore we removed such features to eethe
closely related to the brightness of a single tone. 9 , .
feature dimension.

N . . .
Y M¢[n]* n Spectral centroid, flux, short time energy, andozemssing
C = n=1 (7)  possess large normalized standard deviations caugarthe
N ) .
> M¢[n] rolloff and flatness as shown in Table IV. We ocbnsider four
n=1 _ _ features (Spectral centroid, flux, short time egyemnd zero
whereM{n] is the_ magnitude of the Fourier transform at fedm crossing) and their mean, std, skewness, kurtosis\@-1)/2
and frequency bin. covariance components, respectively. The featureuision is
Short Time EnergyThe short time energy measurement ofjiven in Table .
an audio signal can be used to determine voiceduamdiced 2) SG2 Features: Mel-Frequency Cepstral Coefficients
speech. It can also be used to detect the tram$ition unvoiced
to voice and vice versa [19]. The energy of voispéech is TABLE |
. FEATURE DIMENSION OF FOUR DIFFERENT TIMBRAL TEXTUREEATURES
much greater than the energy of unvoiced speeabrt-8ime v
. ean Std. dev. Skew. Kurt. Cov. Total features
energy can be defined as 2 2 2 2 6 2

N
— 2
En = mZ:l[x( m v (8) Earlier MFCCs widely used in automatic speech raitam

where, x(m) is discrete time audio signal,is time index of later on evolved into one of the prominent techegin every
short-time energy, ana(m) is window of length\. _domaln _of audio _retneval. They represent mostirtitive
Zero Crossingit is a process of measuring the number offformation of signal. MFCCs have been successfully
times in a given time interval that the amplitudespeech mplemented to timbral measurements by H. Teraga@ja
signals crosses through a value of zero. It issemih nature. ~ We took the MFCC feature based on the paper that
Moreover, the zero crossing rate for unvoiced spéegreater Mentioned the mel frequency cepstral coefficients rhusic
than that of voice speech. Moreover, it is ofteeduas a crucial Modelling [21]. Fig. 3 shows the process of creptiFCC

parameter for voiced/unvoiced classification andl gmint features. The first step is to divide the audimaignto frames,
detection. by applying a window function at fixed intervalshd aim is to
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model small (having 10ms) sections of the signalt thre
statistically stationary. The window function is nim&ing
window. We generate the cepstral feature vectoedoh frame.
The next step is to take the Discrete Fourier Toans(DFT).
The phase information has been discarded becauseppeal
studies have shown that the amplitude of the specis much
more important than the phase. The logarithm ofathelitude
spectrum has been taken because the perceivedeksidih a
signal has been estimated to be approximately ithgaic. The
next stage
perceptually meaningful frequencies. This is aohikvby
collecting the spectral components into frequeriog.bAs we
know, lower frequencies are perceptually more irtgdrthan
the higher frequencies. Therefore, the bin spafotigws the
so-called ‘Mel’ frequency scale [22]. The comporseaf the
Mel-spectral vectors calculated for each frame highly
correlated. In order to reduce the number of patarsén the
MFCC, we need to apply a transform to the Mel-ga¢eectors
which decorrelates their components. The cepstatufes of
each frame are obtained by using DCT.

by applying a window function at fixed intervalshd aim is
to model small (having 10ms) sections of the sighat are
statistically stationary. The window function is nmaing
window. We generate the cepstral feature vectoedaoh frame.
The next step is to take the Discrete Fourier Toans (DFT).
The phase information has been discarded becauseppeal
studies have shown that the amplitude of the specis much
more important than the phase. The logarithm ofathelitude
spectrum has been taken because the perceivedeksidih a
signal has been estimated to be approximately ithgaic. The
next stage
perceptually meaningful frequencies. This is aohikvby
collecting the spectral components into frequeriog.bAs we
know, lower frequencies are perceptually more irtgdrthan
the higher frequencies. Therefore, the bin spafotigws the
so-called ‘Mel’ frequency scale [22]. The comporseaf the
Mel-spectral vectors calculated for each frame highly
correlated. In order to reduce the number of patarsén the
MFCC, we need to apply a transform to the Mel-ga¢eectors
which decorrelates their components. The cepstaufes of
each frame are obtained by using DCT.

There are thirteen coefficients in the mel-freqyecepstral

Discrete
Cosine
Transform

Discrete =N Log of IZ> Mel scale | \|
Fourier amplitude

B
Transform spectrum filter bank ||

Audio
data

EYMFce

Windowing ﬂ/

Fig. 3. Mel frequency cepstral coefficefgature extraction of audio.

coefficient. After analysis of the normalized vaga we

selected 12 out of 13 coefficients. The last cogffit has a very

small value of the variance as shown in Table \thabit could
be removed. We try to implement the early seven tamdve

coefficients separately. The first choice is justrfeducing the

dimension. The different feature dimension of MF@@ile
considering seven and twelve coefficients are givetable I
and 11,
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TABLE Il
FEATURE DIMENSION OFMFCC CONSIDERING FIRST SEVEN COEFFICIENTS

is to smooth the spectrum and emphasize

is to smooth the spectrum and emphas

Mean Std. dev. Skew. Kurt. Cov. Total features
7 7 7 7 21 49
TABLE Ill

FEATURE DIMENSION OFMFCC CONSIDERING TWELVE COEFFICIENTS

Mean Std. dev. Skew. Kurt. Cov. Total features
12 12 12 12 66 114

B. Rhythmic Content Features

Rhythmic content features characterize the movenoént
music signals over time and contain such infornm@s the
regularity of the rhythm, beat, and tempo. For thgthmic
feature, beat histogram has been taken. It is gpaotrglobal
representation of the rhythmic content of audioimughe beat
histogram [5] can be obtained by the wavelet deawsitipn of

a signal andcan be interpreted as successive high-pass and

low-pass filtering of the time domain signal. Theedmposition
is defined by

VrignlK =240 @ k- 1
Yowld =X £ 12 k=

where y,,,[K] and YoulKl are the output of high-pass and

(12)

113

low-pass filters respectively, argin] and h[n] are the filter

coefficients for the high-pass and low-pass fil@ssociated to
the wavelet function for fourth order Daubechiesvelats

(DW) [22]. Wavelet Transform deals with the simitarof the

Id%composed signal to the octave filter band. Oheesignal is
&ecomposed, the additional signal processing adperas

required. The building blocks as shown in Fig.€ ased for the
beat analysis feature extraction.

1) Full Wave Rectification:

yin = abg kD 14
where x[n] is the output of the wavelet decompositat that
specific scales.

Audio [ Wavelet Full wave Low pass Down-
data Transform rectification filtering sampling

Histogram [«—| PCrlOdI.Clty Auto- Noise
detection correlation removal

Fig.4. The block diagram of beat histogram for deatextraction
2) Low-Pass Filtering:
an=1-a)fn+aand] (15)
For one-pole filter with an alpha value of 0.99 @bhis used to
smooth the envelope.
3) Downsampling:

birl =4 kip j16

Downsampling the signal reduces computation for the

autocorrelation calculation without affecting therfermance of
the algorithm. The value d&fis 16.
4) Normalization (mean removal)
Mean removal is applied in order to make the sigeatered
to zero for the autocorrelation stage.
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dri=tid-Eph (17) 9wy + B) o gl )
5) Autocorrelation He : : (22)
1 B
d[ =T ¢ B¢ n- K (18) 9lw Xy + ) 00vg N+ R) J g

wherec[n] is periodic signal with period\. ,BlT t;r

6) Periodicity detection and beat histogram calculatio ) and T=|: (23)

There are six different features extracted from the bea T :
histogram. They are relative amplitude of the fastl second N K t-ll\—l Nxm

xm

histogram peak, period of the first and secondobistm peak )
measure in beat per minute (bpm), ratio of the #ogs of the oM the above equation (21), the target vediand the

second peak divided by the amplitude of the firsakp and output matrix of the hidden layadd can comprise a linear
overall sum of the histogram. system. Thus, the learning procedure of the netvialps to

find the optimal weight matrix3 between the output layer and

IV. CLASSIFIER the hidden layer3 can be determined by using the
Traditionally, all the parameters of the feed-fordva Moore-Penrose generalized inverse-of
networks need to be tuned and thus there existdehendency B=H T (24)

between different layers of parameters (weightslaages). In From the above equation (24) we can draw the faHgw

par_'ucular the.gradlentldescent-based methodsthese used in important properties. The first one is that we t@ minimum
various learning algorithms of feed-forward neural networks "

[23]. However, the weakness of this kind of leagninethod is training error, because the solutic,fh: H T is one of the

that it is generally very slow due to diverse |@agrsteps and |east-square solutions of the general linear systg?+=T . In

may easily converge to local minima. They also imegmany » o o
iterative learning steps in order to obtain bettearning 2ddition, the optimajs is also minimum norm among these

performance. solutions. Thus, ELM has the best generalizatiofiopmance

ELM [24] resolves the problem associated with th€ompared to the typical back propagation netwarksummary
gradient-based algorithm by analytically calculgtine optimal the ELM algorithm can be summarized as follows.
weights of single-hidden layer feed-forward neutatworks ~ Algorithm ~ ELM:  For the given training set
(SLFNs). Where the weights between input layers diel [ ={(x, t)| % O R 0 R" i=1,..., N}, activation function
hidden layer biases are arbitrarily selected ard the optimal .
values for the weights between the hidden layerarplut layer g(x), and hidden neuron numbé,

are determined by calculating the linear matrixagiuns. 1) Assign random input weightv, and biashb;,
For N distinct samples andﬂ hidden nodes, the activation i=1,...,N.
function g(x) of the SLFN neural network is defiresl 2) Calculate the hidden layer output matrix
N 3) Calculate the output weig):
i§1,8ig(V\{.><j +|P):?’ i=1,.....,N (19) ,@=HTT

—_ L] . .
wherewW =[Wy, W,,.., W ] is the weight vector connecting whereH "is the Moore-Penrose generalized inverse of hidden
theith hidden node and the input node&, =[5, 85, -, An, I the layer output matriki.

is the weight vector connecting théh hidden nodes and output
nodes, andy is the threshold of théth hidden nodew.x;
denotes the inner productwfandx;.

The standard SLFNs withN hidden nodes with the
activation functiorg(x) can approximate thes¢samples with

zero error means th{“j_lﬂoj —t, |F Cie, there exis§ , . | Voting : |Classification

w;, andb; such that

N .
El'glg(wxj + P)= } = ,N (20)

wheret is the target vector of theth input data. Equation (19) A. Bagging Algorithm
can be written as a matrix equation to form a nqueéion by  Bagging [25] is a well-known ensemble learning aigyn that

using the output matrix of the hidden layer has been shown to be very effective in improvingegalization
HB=T (21)  performance compared to the individual base modesiman
where indicated that bagging is a smoothing operatiorctvhirns out

Copyright © 2014 GiRI (Global IT Research Institute)



ICACT Transactions on Advanced Communications Technology (TACT) Vol. 3, Issue 3, May 2014

to be advantageous when aiming to improve the patide
performance of regression or classification. lai%ootstrap”
ensemble method that creates bags for its ensdwglitaining
each classifier on a random redistribution of tfaning set.
Each classifier's training set is generated by earig drawing,
with replacement; many of the original samples imayepeated
in the resulting training set while others may é# but. Each
bag classifier in the ensemble is generated witthifferent
random sample of the training set. The algorithemthpplies a
base classifier to classify each bag. Bagging risoat always
more accurate than a single classifier. Finally deeision is
taken by majority voting of all the base classifiesults. Fig. 5
shows the overview of genre classification. Ouelaassifier is
ELM.
The Bagging Algorithm
Inputs Training setS, based classifidr, integerT (number of
bootstrap sample)
fori=1toT{
S=bootstrap sample fro®(i.i.d. sample with
replacement)

E=L(S) }

E*(X) zargmax > 1

(the most often predicated lakygl
VY BB (X)=y

Output Compound classifieE”

V. EXPERIMENTAL SETUP ANDDATA PREPARATION

Different datasets widely used for music genresifecgtion
are employed for performance comparison. The fietaset
(GTZAN) consists of 1000 songs over ten differeehmgs:
Classical, Blues, Hiphop, Pop, Rock, Gazz, Regdéetal,
Disco, and Country. Each class consists of 100 sdwaying

duration of 30s. The dataset was collected by Gero

Tzanetakis [26]. Each song in the database wagdtas a
22050Hz, 16bits, and mono audio file. The secorndsdd is

ISMIR2004 [27] which were used in the Music Genr

Classification Contest 2004. This dataset has aequal
number of distributions of music tracks in eactssldt consists
of six different classes: Classical, Pop and Rddkfal and
Punk, Electronic, World, and Jazz and Blues re$pedgt This
dataset consists of 1458 music tracks in whichmBSic tracks
are used for training and the other 729 trackgdesting. The
audio files are stored in MP3 format having a samgpl
frequency of 44.1 kHz, 128-kbps, 16 bit, and stdiles. For
our research, each stereo MP3 file was first cdedento a
44.1 kHz, 16 bit, mono audio file before featurérastion. In
summary, the music tracks used for training/tesiimgude
320/320 tracks of Classical, 115/114 tracks of ttetc, 26/26
tracks of Jazz/Blues, 45/45 tracks of Metal/Pun@1/102
tracks of Rock/Pop, and 122/122 tracks of Worldimgenre.
A five-fold cross validation scheme is used toleate the
performance of the proposed system in the GTZENsddat
whereas in order to compare our proposed methol tli
results from the ISMIR2004 Music Genre Classifioati
Content, our experiment on the ISMIR2004 genresgdtased
the same training and testing set as in the corteite contest,
the classification performance is evaluated based50:50
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training and testing set instead of five-fold crealdation.

VI.

At first, in order to reduce the dimensionalitytbé extracted
feature set, the normalized standard deviationachdimbral
texture feature is calculated
ISMIR2004 dataset. As the number of timbral textigature
increases the dimensionality of the extracted featset
increases rapidly, therefore we removed the radtitess
important features by checking the correspondingnatized
standard deviations. Table IV and V contain therage
normalized standard deviation of the GTZAN and I®2004
datasets. The data seen in table 1V indicatesflhaess and
rolloff are less significant for genre classificatithan the other
four in FG1. A similar approach is also applied 862 of
MFCC coefficients. There is only one MFCC coeffitigvhich
has a relatively small value of normalized standdesdliation.
Aside from that coefficient, the remaining twelveetficients
are useful for genre classification.

TABLE IV
NORMALIZED STANDARD DEVIATION OF TIMBRAL TEXTURE FEATURES
(EXCLUDING MFCC)

RESULT AND ANALYSIS

Energy Centroid Flux Zerocrossing Flatness Rolloff

Nor.Std  1.085 0.690 0.886 0.671 0.239 0.274
TABLE V
NORMALIZED STANDARD DEVIATION OF MFCC
MFCC Coefficients 1 2 3 4 5 6 7
Normalized Standard Deviation 2.03 2.31 2.36 243 2.49.382 243
MFCC Coefficients (contd.) 8 9 10 11 12 13
Normalized Standard Deviation 2.24 2.28 248 229 1.60.020

The genre classification
ISMIR2004 datasets is shown in table VI and Vlipegively.

Several experiments have been conducted amongftaeedt

feature sets. The first experiment was conductehimtimbral
texture features in FG1 like spectral centroidx flenergy, and
zero crossing for genre classification (excluding®C). The
second and third experiments were only conducte8@&® with
seven and twelve mel-frequency cepstral coeffisidfgature
dimension shown in table Il and Il respectivelyfhe fourth
and fifth experiments only considered mean, stathdaviation,
skewness, and kurtosis of timbral texture featuréuding
seven and twelve MFCC coefficients separately viitle
rhythmic content feature. The final experiment wasducted
taking the covariance matrix and all other featuréhe
experiment was performed into two different stepdind the
classification accuracy in regard to minimum (seW¢RCC
coefficients) and maximum (twelve MFCC coefficigrfesature
dimensions considering mean, standard deviatioawsgss,
and kurtosis.

The combination of different feature sets givesfedént
classification accuracy. The feature extracted frbl of
energy, centroid, flux, and zero crossing gives388% of
accuracy. Similarly, SG2 (MFCC feature sets) withesn and
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twelve coefficients give 64.62% and 66.26%
respectively. This experimental result shows tbewen or
eleven coefficients of MFCC do not make a big défece in
genre classification. We also tried to find out tiverall impact
of classification accuracy with covariance compdsemhe
classification accuracy of GTZAN dataset withouvagance

components comes around 78.26% (7-MFCCs) and 80.21¢

(12-MFCCs) respectively. Among them, maximum accyiia

obtained while combining the covariance componenith

other feature sets. The classification accuracthefGTZAN

dataset increases from 80.21% to 85.58% while dhoty
covariance components. Similarly, ISMIR2004 clasatfon

accuracy also increases from 81.53% 86.46%. Hence,
covariance components had significant impact inroxijmg the
genre classification.
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accuracghang-Hsing Lee's method [26] and better than &hleo
approaches including the ISMIR Music Genre Clasatfon
Contest (classification accuracy 84.07%) showrmabig IX.

ication aceuracy
,
p

4
(=1
B

TABLE VI 3 5 7 9 11 13 15 17 1S 21 23 25 27 29
CLASSIFICATION ACCURACY (CA) OF GTZAN DATASET IN DIFFERENT FEATURE
SETS No. of bags
Feature set ELM(CA) Fig. 6: Number of bags Vs classification accurat¢IGEN dataset.
Energy+Centroid+Flux+Zerocrossing 68.33%
MFCC (7 coff) 64.62% 100
MFCC (12 coff) 66.26% g
[ECFZ+MFCC, 7 coff] [without covariance]+beat ligram  78.26% % %0 ) -
[ECFZ+MFCC, 12 coff.] [without covariance]+beastigram 80.21% & 8 o —
[ECFZ+MFCC , 7 coff.] [with covariance]+beat histagn 84.52% é 80 /,_—7—:_' -
[ECEZ+MFCC, 12 coff.][with covariancel+beat histagm 85.15% ’<§ 75—
& 70
TABLE VI £ o
CLASSIFICATION ACCURACY (CA) OF ISMIR2004DATASET IN DIFFERENT
FEATURE SETS o5
Feature set ELM(CA) No.of bags
Energy+Centroid+Flux+Zerocrossing (ECFZ) 73.62%
MFCC (7 coff) 66.58% Fig.7: Number of bags Vs classification accuracisdfilR2004 dataset.
0,
MFCC (12 coff) . . . 68.78% TABLE VI
(ECFZHMFCC (7 coff.)) (without covariance)+beatbgram 79.65% COMPARISON OF CLASSIFICATION ACCURACY WITH OTHER AFROACH OF
(ECFZ+MFCC (12 coff.)) (without covariance)+beattbgram 81.53% GTZAN DATASETS(OUR APPROACH BASED ON FIVEFOLD CROSS
(ECFZ+MFCC (7 coff.)) (with covariance)+beat histm 85.15% VALIDATION
(ECFZ+MFCC (12 coff.)) (with covariance)+beat higtmm 86.46% Reference CA
| h. th " | . hi . Our approach 85.15%
. n our _approac. s e extreme earnlng_ _ma(_: ine C()ﬂﬂi- ]| Jin S. Seo [11] 84.09%
with bagging algorithm is used for the classifioatof the music
. . . - Bergstra et al [9] 82.50%
genre. Before we applied the ELM with bagging ataasifier, Li et al.[1] 8.50%
we attempted to find out how many bags were netalettain T '
. e Tzanetakis [5] 61.00%
maximum classification accuracy. There were twéimtge bags
combined in case of the GTZAN dataset to get mawimu TABLE IX

classification as shown in Fig.6. In the ISMIR2084taset
maximum classification accuracy was achieved wiveenty

COMPARISON OF CLASSIFICATION ACCURACY WITH OTHER ARROACH OF
ISMIR2004DATASETS

five bags were used as shown in Fig.7.

Table VIII compares our proposed method with othe
approachesn terms of average classification accuracy in th
GTZAN dataset. It is clear that our proposed methclieves
the classification accuracy of 85.15% which is éxethan other
approaches. Similarly, Table IX shows the comparisssults
with previous different approaches as well as ®&lIR2004
Music Genre Classification Contest. The classiftzaaccuracy

Reference CA

Our approach (ECFZ+MFCC+beat histogram) 86.46%
Chang-Hsing Lee[10] 86.83%
Jin S. Seo [11] 84.90%
Pampalk et al. [12] 84.07%
Bergstra et al [9] 82.34%
Our approach (ECFZ+MFCC+beat histogram) 86.46%

is 86.46%. It is also comparatively competitive hwit

Copyright © 2014 GiRI (Global IT Research Institute)



ICACT Transactions on Advanced Communications Technology (TACT) Vol. 3, Issue 3, May 2014

To get a better picture of the classification aacyrof an
individual music genre, the confusion matrices giken. The
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VILI.
In this paper, first we analysed the validity ohltiral texture

CONCLUSIONS

confusion matrix ig1 x n matrix, at which each column of the features. The validity criterion is determined hg normalized

matrix represents the instances in a predicted clalsile each
row represents the instances in an actual class.didgonal
entries of the confusion matrix are the rates okicwgenre
classification that are correctly classified, whie off-diagonal
entries correspond to misclassification rates.

standard deviation of each feature. In the secdades the
frame-wise features have been integrated by usewnjral
moments including mean, standard deviation, skesvizesl
kurtosis. Also, we propose the covariance companeetween
timbral texture frame-wise features to be inclutedmproving

Table VIII shows the confusion matrix of the GTZANthe classification performance. By considering ¢hésature

dataset. The genres are arranged in the orderasiichl (Cl),

Blues (Bl), Hiphop (Hi), Pop (Po), Rock (Ro), Jd3a), Reggae
(Re), Metal (Me), Disco (Di), and Country (Co) restively.

Similarly, Table IX shows the confusion matrix otrge

classification of the ISMIR2004 dataset. The genegs

arranged in the order of Classical (Cl), Pop andkR@&R),

Metal and Punk (M&P), Electronic (Ele), World (Wand Jazz
and Blues (J&B) respectively.

Form the confusion matrix of the GTZAN dataset;ca® see

that some music genres are classified with sigaifi@accuracy
like Classical, Pop, Metal, and Reggae. ExcepRiock, other
music genre classification rates are also competitRock
music has a minimum classification rate. It is caid with
Metal. Beside this, it is diverse in nature as cameg to other
genre and also overlaps its characteristic withewotpenres.
Music genre Disco and Country are also confused Réggae
and Metal respectively.
Similarly, Table XI shows the confusion matrix ohet
ISMIR2004. The classification rate of ClassicalpRmd Rock,
and Electronic are significant. Genres like Jazt Blues, and
World are also relatively better than Metal and Ruhhe
World music is diverse in nature, so it is confusgith Classical
and Pop and Rock. Genre like Jazz and Blues avecatdused
with Classical. Among the six genres, Electronis h@nimum
classification rate as compared to others.

TABLE X
CONFUSION MATRIX OF GTZAN DATASETS CLASSIFICATION ACURACY WITH
TIMBRAL TEXTURE AND RHYTHMIC CONTENT FEATURES

Cl Bl Hi Po Ro Ja Re Me Di Co
Cl 95.0 3.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.33
BI 0.0 8525 5.25 0.0 0.0 0.0 2.48 452 250 0.0
Hi 0.0 3.24 8126 2.06 7.39 0.0 0.0 0.0 8.03 0.0
Po 0.0 0.0 0.0 9682 1.14 0.0 0.0 0.0 2.04 0.0
Ro 218 1.15 0.0 1.39 7492 0.0 355 7.09 5.03 269
Ja 521 40 0.0 0.0 2.52 83.12 0.0 0.0 0.0 5.15
Re 0.0 0.0 0.0 8.64 2.23 3.68 8545 0.0 0.0 0.0
Me 0.0 0.0 0.0 3.89 0.0 5.13 0.0 8957 2.28 1.15
Di 0.0 0.0 2.35 0.0 495 0.0 6.25 2.358390 0.0
Co 0.0 6.12 0.0 4.19 0.0 0.0 0.0 9.18 0.0 8051

TABLE Xl

CONFUSION MATRIX OF ISMIR2004DATASET CLASSIFICATION ACCURACY OF
TIMBRAL TEXTURE AND RHYTHMIC CONTENT FEATURES

Cl P&R M&P Ele Wo J&B

Cl 95.75 0.0 0.0 3.14 1.13 0.0
P&R 1.45 90.62 0.0 4.58 3.35 0.0

M&P 7.18 10.19 78.63 0.0 2.52 1.48
Ele 0.0 3.28 4.46 87.02 3.85 1.39
Wo 6.47 7.82 0.0 2.86 80.85 0.0

J&B 8.14 2.62 0.0 3.32 0.0 85.92

values, several experiments have been performeatatepy to
analyse classification accuracy among the diffefegiiure sets.
The ELMs combined with bagging is used to builddlzessifier.
The ELM is an unstable classifier; therefore ELMgwagging
improved the classification accuracy as well as the
generalization performance.

The classification accuracy of both datasets (GTZaid
ISMIR2004) is shown in table IV and V, respectively
According to our proposed method, the classificatioccuracy
of 85.15% is achieved in GTZAN datasets. The expenial
results on the ISMIR2004 genre datasets have alersthat
our proposed approach achieves higher classifita@zuracy
(86.46%) than the ISMIR Music Genre Classificatidontest
with classification accuracy (84.07%) competitiveithw
Chang-Hsing Lee (86.83%).

Experimental results show that there are no sicpnifi
differences seen while considering seven and twih=CC
coefficients for genre classification. It concludésat the
minimum feature dimension is also sufficient forgiwugenre
discrimination. In addition, our experiment shows that
covariance components have a significant impa@nproving
the genre classification. By adding the compon&éscould
improve approximately 5% of the overall accuracye @pect
that a more accurate classifier can be construaid more
features added such as segment-based ones aftitiopiag
audio data into pieces, even though it increasesdmplexity
of the classifier.
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