
 

 

  
Abstract— Music genre classification is a vital component for 

the music information retrieval system. There are two important 
components to be considered for better genre classification, which 
are audio feature extraction and classifier. This paper 
incorporates two different kinds of features for genre classification, 
timbral texture and rhythmic content features. Timbral texture 
contains the Mel-frequency Cepstral Coefficient (MFCC) with 
other several spectral features. Before choosing a timbral feature 
we explore which feature contributes a less significant role on 
genre discrimination. This facilitates the reduction of feature 
dimension. For the timbral features up to the 4-th order central 
moments and the covariance components of mutual features are 
considered to improve the overall classification result. For the 
rhythmic content the features extracted from beat histogram are 
selected. In the paper Extreme Learning Machine (ELM) with 
bagging is used as the classifier for classifying the genres. Based on 
the proposed feature sets and classifier, experiments are 
performed with two well-known datasets: GTZAN and the 
ISMIR2004 databases with ten and six different music genres, 
respectively. The proposed method acquires better and 
competitive classification accuracy compared to the existing 
approaches for both data sets. 

 
Keyword— Classification, music genres, ELM (Extreme 

Learning Machine) with bagging, covariance matrix, timbral 
texture, rhythmic contents 

I. INTRODUCTION 

UTOMATIC music genre classification is an important for the 
information retrieval task since it can be applied for 

practical purposes such as efficient organization of data 
collections in the digital music industry. There have been 
several well-known distinct approaches put forward on this. 
Still, efficient and accurate automatic music information 
processing remains as the key issue, and it has been consistently 
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attracting the attention of a growing number of researchers, 
musicians, and composers. A current challenging topic in 
automatic music information retrieval is the problem of 
organizing, describing, and categorizing music contents on the 
internet [1]. Although music genre classification is done 
manually, sometimes it is difficult to precisely define the genre 
of music content. The reason for such difficulties is due to fact 
that music is a state of art that evolves, where composers and 
musicians have been influenced by the music of other genres. 
Despite these difficulties, there are still some possibilities that 
remain for genre classification. The audio signals of music 
belonging to the same genre mean they share the certain 
common characteristics, because they are composed of similar 
types of instruments, having similar rhythmic patterns, and 
similar pitch distributions [2]. The extracted features must be 
comprehensive (representing music very well), compact, and 
effective. 

The overview of our music genre classification is shown in 
Fig.1. It depicts the backbone of genre categorization. There are 
two associated problems that need to be addressed in genre 
classification, i.e., feature extraction and classification. The first 
stage is to extract the meaningful and relevant features from 
audio that could sufficiently discriminate the music genre. The 
next stage is to classify the genre based on the extracted features. 
In our method the extreme learning machine (ELM) combined 
with bagging is used as a classifier. Several bags of the dataset 
are constructed and each bag is trained using individual ELMs. 
The final decision is made based on the majority voting score. 
ELM is an unstable classifier, therefore ELM combined with 
bagging increases the stability, as well as generalization 
performance of the classifier.  

For constructing a robust music genre classifier, extracting 
features that allows direct access to the relevant genre-specific 
information is crucial. Most musical genre classification 
systems utilize the low-level spectral features of the short time 
audio signal in the range of 10ms to 100ms, such as pitch 
extraction, mel-frequency cepstral coefficients (MFCCs), and 
other timbral texture features [3]. Then the short-time low-level 
spectral features are integrated on long duration. The most 
widely used integrating method is mean and standard deviation 
of the short time feature [4, 5]. 

In this paper, we attempt to implement timbral texture 
features which represent short-time spectral information, and 
rhythmic content features like beat histogram which represent 
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the long-term properties. Timbral texture features include 
spectral centroid, flux, rolloff, flatness, energy, zero crossing, 
and MFCCs, respectively. We divide the timbral texture 
features into two groups for convenience; the first group (FG1) 
does not include MFCCs and the second group (SG2) includes 
only MFCCs. After the frame-wise extraction of each timbral 
texture feature among FG1 from all genres of music, the next 
stage is to calculate the standard deviation for all genres of 
music. The aim of calculating the standard deviation for each 
feature in whole genres is to find out which feature is 
insignificant for genre discrimination. The feature which has a 
small value of standard deviation contributes the insignificant 
impact on genre discrimination. Based on the standard deviation 
value, we considered a limited number of timbral features. 

A Similar procedure has been preceded for the SG2 of MFCC 
features as well. Out of thirteen, twelve coefficients give 
meaningful standard deviation values. This shows that twelve 
MFCC coefficients are meaningful for genre classification. For 
our experiment, we consider both the first seven and twelve 
coefficients separately for genre classification. 

Timbral texture features are based on short time low-level 
spectral components that are integrated on long duration. The 
integration method is mean and standard deviation. Beside this, 
high order moments such as skewness and kurtosis are also 
implemented for integrating the frame-wise features. The aim of 
considering the high order moment is that even if there are the 
same values of mean and standard deviation, the position of 
location (shape of skewness and kurtosis position) could be 
different because each feature cannot be modelled by the 
Gaussian distribution. 

Ultimately, the high order moment increases the 
classification accuracy when it is combined with other low level 
spectral features. It generally provides the supplementary 
statistical information for the audio signal. Skewness is a 
measure of the asymmetry of the data distribution regarding the 
sample mean, which represents the relative disposition of the 
tonal and non-tonal components of the audio signal. Kurtosis is 
the measure for the degree of peakedness or flatness of a 
distribution [6]. Therefore we have considered 4n components 
for the n texture features. 

In addition we propose to use the covariance components of 
mutual timbral texture features. Each of them gives the 
statistical property of mutual random variables associated 
features. For each song the covariance values of selected 
features from FG1 and SG2 are calculated, respectively. 
Therefore, additional n(n-1)/2 components are included for n 
timbral texture features.  

Note that we can have 4n+ n(n-1)/2 for n features, which 
increases rapidly as the number of features increases. This is the 
reason why we remove the relatively less important features by 
checking the corresponding variances. 

Rhythm is a property of an audio signal that represents a 
changing pattern of timbral and energy over time. Rhythmic 
features characterize the movement of music signals over time 
and contain such information as the regularity of the rhythm, 
beat, tempo, and time signature. The feature set for representing 
the rhythmic structure is based on detecting the most salient 
periodicities of the signal and it is usually extracted from the 

beat histogram. Rhythmic content features contain relative 
amplitude of the first and second histogram peaks, period of 
first and second peaks, ratio of the amplitude of the second peak 
divided by the amplitude of first peak, and overall sum of the 
histogram. 

There are different types of classifiers which have been 
proposed for genre classification. We prefer the distinct 
classifier than the previously applied one. Extreme Learning 
Machine (ELM) is a recently proposed classifier which has high 
generalizing capability and takes minimum time for training. 
The reason for selecting ELM is that it does not require a tuning 
parameter, has the smallest training error, and is free from the 
local maxima problem. However, ELM is unstable because the 
weights connected with hidden units are randomly determined. 
Therefore, we combine ELM with bagging in order to increase 
the stability. Bagging is almost always more accurate than a 
single classifier. Other classifiers like K-Nearest Neighbour 
(K-NN), Neural Networks (NN) have some drawbacks. In case 
of neural network, when learning rate is too small, the algorithm 
converges very slowly. It also requires a tuning parameter and 
probably faces the local maxima problem. K-Nearest Neighbour 
is a simple nonparametric classifier. It is proven that the error of 
K-NN’s is twice large than Bayesian error rate. 

This paper is organized as follows. A review of related work 
is provided in section II. Feature extraction is the critical portion 
of genre classification; and is describes in section III. Section IV 
deals with the classifier, similarly section V explains the 
experimental setup and data preparation, and section VI 
explains the result and analysis. Finally, section VII describes 
the conclusion of the proposed method and future work of the 
genre.  

II.  RELATED WORK 

Many different features have been introduced for music 
genre classification. The primary aim of feature extraction is to 
acquire a meaningful representative part of music in the reduced 
form. The acoustic features include tonality, pitch, beat, and 
symbolic features extracted from the scores, and text-based 
features can be obtained from the song lyrics. In this paper, we 
only focus on timbral texture and rhythmic content which are 
sub-groups of content-based features. 

The content-based acoustic features are divided into timbral 
texture features, rhythmic content features, and pitch content 
features [7]. Timbral features are often calculated for every 
short-time frame of sound based on the Short Time Fourier 
Transform (STFT) [8]. Timbral texture features contain MFCCs, 
spectral centroid, spectral flatness, spectral flux, spectral rolloff, 
zero crossing, energy, and Linear Prediction Coefficients (LPCs) 
[7, 8]. These features are widely used in different applications 
based on the requirement of applications. MFCCs have been 

 
  Fig.1. Overview of music genre classification 
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extensively used in speech recognition [8]. Later, MFCC 
features are used for discriminating the music and speech as 
well. Rhythmic content features possess information about 
continuity of rhythm, beat and tempo. Tempo and beat tracking 
are excessively used in music search and retrieval systems. The 
tempo value is a number which represents the speed of music or 
music measured by beats per minute (bmp) [9, 10]. The pitch 
content feature deals with frequency information of music. 

Bergstra et al. [11] extracts the several timbral texture 
features like MFCCs, spectral centroid, spectral flux, spectral 
rolloff, zero crossing, energy, and Linear Prediction 
Coefficients.  These features are almost similar with the features 
used in [3, 5].  AdaBoost is used as a classifier.  

C.-H. Lee et al. [12] considers the Octave-Based Spectral 
Contrast (OSC) and MFCC for feature extraction. There is a 
range of nine different frequencies in octave-based spectral 
contrast. Music genres are classified by using Linear 
Discriminant Analysis (LDA).  Recently, Seo et al. [13] also 
implemented the Octave-Based Spectral Contrast (OSC) for 
feature extraction. Beside this, he consider the high order 
moment for improving the performance of classification 
accuracy. The genre classification is performed by using 
Support Vector Machines (SVM).  

Li et al. [1] mention several audio feature extraction 
methodologies. Later, he proposed a new approach for feature 
extraction, i.e. Daubechies Wavelet Coefficients Histograms 
(DWCHs). The effectiveness of this new feature is compared 
using various machine learning algorithms, SVMs, Gaussian 
Mixture Models (GMMs), K-NNs, and LDAs. 

The spectral similarity of the timbral texture feature is 
described by Pampalk et al. [14]. The audio signal is chopped 
into thousands of very short frames and their order in time is 
ignored. Each frame is described by MFCCs. The large set of 
frames is summarized by a model obtained by clustering the 
frames. The distance between two pieces is computed by 
comparing their cluster models. Later, GMM is considered for 
genre classification. 

Tzanetakis and Cook [7] proposed a comprehensive set of 
features for direct modelling of music signals and explore the 
different applications of those features for musical genre 
classification using K-Nearest Neighbor and GMM. Other 
researchers like Lambrou et al. [15] use statistical features in the 
temporal domain as well as three different wavelet transform 
domains to classify music into rock, piano, and jazz.Soltau et al. 
[16] propose an approach of representing temporal structures of 
input signals. He shows that this new set of abstract features can 
be learned via artificial neural networks and can be used for 
music genre identification. Deshpande et al. [17] use Gaussian 
Mixtures, SVM, and K-Nearest Neighbor to classify the music 
into rock, piano, and jazz based on timbral texture features. 

III.  FEATURE EXTRACTION 

Feature extraction encompasses the analysis and extraction 
of meaningful information from audio in order to obtain a 
compact and concise description that could be machine readable. 
Features are usually selected in the context of a specific task and 
domain. The features that are used in our research are divided 

into two categories, the timbral texture feature and rhythmic 
content feature. 

A. Timbral Texture features 

These features are used to differentiate mixture of sounds that 
possibly have similar pitch and rhythm [8]. The features used to 
represent timbral texture are based on standard features 
proposed for music-speech discrimination [18]. To extract the 
timbral features, audio signals are first divided into frames by 
applying a windowing function at fixed intervals. The window 
function of this research is hamming window which helps to 
remove the edge effects. Timbral texture features in Fig.2 have 
been computed and later we calculated different statistical 
values like mean, standard deviation, skewness, kurtosis, and 
covariance matrix from feature values. The mean (µ) and 
standard deviation (σ) for frame-wise feature values (Xn) in a N 
-frame song are given by 

       
1

1
( )

N
Mean XnnN

µ = ∑
=

                                                     (1) 

       

2

1

1
( ) ( )

N
Std XnnN

σ µ= −∑
=

                                            (2) 

The skewness is a measure of asymmetry of the distribution, 
which can represent the relative disposition of the tonal and 
non-tonal components of each band. If the tonal components 
occur frequently in a band, the distribution of its spectrum will 
be left-skewed otherwise it will be right-skewed. 
Mathematically, the skewness in a song can be defined as  

3
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1
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                                               (3) 

Kurtosis is a measure of whether the data are peaked or flat 
relative to a normal distribution. That is, data sets with high 
kurtosis tend to have a distinct peak near the mean. It is difficult 
to specify the exact contribution of kurtosis in music genre 
classification [13]. However, the kurtosis measure can sketch 
the effective dynamic range of the audio spectrum. 
Mathematically it can be defined as 

 
Fig. 2.  Overview of Timbral texture features extraction of audio. 
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Covariance is measured between two random variables or 
features. The aim of considering the covariance is usually to see 
if there is any relationship between the random variables. It is 
useful to measure the polarity and the degree of the correlation 
between two features. The covariance of two features Xn and Yn 
in a song is given as 

1
( )( )

1
( , )n n

N
X Yn n YXN n

Cov X Y µ µ∑ − −
=

= ,                       (5) 

where Xµ and Yµ are corresponding means of Xn and Yn , 

respectively. For n timbral texture features we acquired 
( 1) / 2n n− mutual covariance values. 

 We consider two groups of timbral texture features FG1 and 
SG2 described as 

1) FG1 features  
Spectral flux: It is defined as the variation value of the 

spectrum between the adjacent two frames in a short-time 
analyze window. It measures how quickly the power spectrum 
changes and is used to determine the timbral of an audio signal. 

2
1

1
( [ ] [ ] )t t

n

N
F N n N nt −=

= −∑                                               (6)                                       

where Nt[n] and Nt-1[n-1] are normalized magnitudes of the 
Fourier transform at the present frame t, and previous frame t-1 
respectively. 

Spectral centroid: The spectral centroid is described as the 
gravity centre of the spectral energy.  It determines the point in 
the spectrum where most of the energy is concentrated and is 
correlated with the dominant frequency of the signal. It is 
closely related to the brightness of a single tone. 
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                                                    (7) 

where Mt[n] is the magnitude of the Fourier transform at frame t 
and frequency bin n. 

Short Time Energy: The short time energy measurement of 
an audio signal can be used to determine voiced and unvoiced 
speech. It can also be used to detect the transition from unvoiced 
to voice and vice versa [19]. The energy of voiced speech is 
much greater than the energy of unvoiced speech. Short-time 
energy can be defined as 

2

1
[ ( ) ( )]

m

N
E x m w n mn =

= −∑                                                (8) 

where, x(m) is discrete time audio signal, n is time index of 
short-time energy, and w(m) is window of length N. 

Zero Crossing: It is a process of measuring the number of 
times in a given time interval that the amplitude of speech 
signals crosses through a value of zero. It is random in nature. 
Moreover, the zero crossing rate for unvoiced speech is greater 
than that of voice speech. Moreover, it is often used as a crucial 
parameter for voiced/unvoiced classification and end point 
detection. 

1
sgn sgn 11 | ( [ ] ( [ ])|

2 n

N
Z x n x nt

=
= − −∑                                       (9) 

where sgn is a short notation of sign function. The sgn function 
is 1 for positive arguments and 0 for negative arguments and 
x[n] is the time domain for signal for frame t. 

Spectral Rolloff: It is a measure of the bandwidth of the audio 
signal. It is the fraction of bins in the power spectrum in which 
85% of the power is at lower frequencies. 

1 1
[ ] 0.85 [ ]

N

n n

Rt
M n M nt t= −

=∑ ∑                                              (10) 

where Mt[n] is the magnitude of the Fourier transform at frame t 
and frequency bin n. 

Spectral flatness: It is used to characterize an audio spectrum. 
Spectral flatness is typically measured in decibels, and provides 
a way to quantify how tone like a sound is, as opposed to being 
noise-like. 
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where x(m) represents the magnitude of  bin number m.  
From the above mentioned features in FG1, the normalized 

standard deviation of all the data has been calculated. Since the 
standard deviation generally depends on the mean value in 
general, the standard deviation is divided by corresponding 
mean to find out the less important features. Note that a smaller 
value of the standard deviation means a smaller change in the 
values of the frame-wise timbral texture feature. This means any 
derived central moments from the feature and the covariance 
with the feature is not significant for the discrimination of music 
genres. Therefore we removed such features to reduce the 
feature dimension. 
Spectral centroid, flux, short time energy, and zero crossing 

possess large normalized standard deviations compared to the 
rolloff and flatness as shown in Table IV. We only consider four 
features (Spectral centroid, flux, short time energy, and zero 
crossing) and their mean, std, skewness, kurtosis and n(n-1)/2 
covariance components, respectively. The feature dimension is 
given in Table I. 

2)  SG2 Features: Mel-Frequency Cepstral Coefficients 

Earlier MFCCs widely used in automatic speech recognition 
later on evolved into one of the prominent techniques in every 
domain of audio retrieval. They represent most distinctive 
information of signal. MFCCs have been successfully 
implemented to timbral measurements by H. Terasawa [20]. 

We took the MFCC feature based on the paper that 
mentioned the mel frequency cepstral coefficients for music 
modelling [21]. Fig. 3 shows the process of creating MFCC 
features. The first step is to divide the audio signal into frames, 
by applying a window function at fixed intervals. The aim is to 

TABLE I 
FEATURE DIMENSION OF FOUR DIFFERENT TIMBRAL TEXTURE FEATURES 

Mean Std. dev. Skew. Kurt. Cov. Total features 
  4      4    4    4   6      22 
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model small (having 10ms) sections of the signal that are 
statistically stationary. The window function is hamming 
window. We generate the cepstral feature vector for each frame. 
The next step is to take the Discrete Fourier Transform (DFT). 
The phase information has been discarded because perceptual 
studies have shown that the amplitude of the spectrum is much 
more important than the phase. The logarithm of the amplitude 
spectrum has been taken because the perceived loudness of a 
signal has been estimated to be approximately logarithmic. The 
next stage is to smooth the spectrum and emphasize 
perceptually meaningful frequencies. This is achieved by 
collecting the spectral components into frequency bins. As we 
know, lower frequencies are perceptually more important than 
the higher frequencies. Therefore, the bin spacing follows the 
so-called ‘Mel’ frequency scale [22]. The components of the 
Mel-spectral vectors calculated for each frame are highly 
correlated. In order to reduce the number of parameters in the 
MFCC, we need to apply a transform to the Mel-spectral vectors 
which decorrelates their components. The cepstral features of 
each frame are obtained by using DCT. 

by applying a window function at fixed intervals. The aim is 
to model small (having 10ms) sections of the signal that are 
statistically stationary. The window function is hamming 
window. We generate the cepstral feature vector for each frame. 
The next step is to take the Discrete Fourier Transform (DFT). 
The phase information has been discarded because perceptual 
studies have shown that the amplitude of the spectrum is much 
more important than the phase. The logarithm of the amplitude 
spectrum has been taken because the perceived loudness of a 
signal has been estimated to be approximately logarithmic. The 
next stage is to smooth the spectrum and emphasize 
perceptually meaningful frequencies. This is achieved by 
collecting the spectral components into frequency bins. As we 
know, lower frequencies are perceptually more important than 
the higher frequencies. Therefore, the bin spacing follows the 
so-called ‘Mel’ frequency scale [22]. The components of the 
Mel-spectral vectors calculated for each frame are highly 
correlated. In order to reduce the number of parameters in the 
MFCC, we need to apply a transform to the Mel-spectral vectors 
which decorrelates their components. The cepstral features of 
each frame are obtained by using DCT. 

There are thirteen coefficients in the mel-frequency cepstral 

coefficient. After analysis of the normalized variance we 
selected 12 out of 13 coefficients. The last coefficient has a very 
small value of the variance as shown in Table V, so that it could 
be removed. We try to implement the early seven and twelve 
coefficients separately. The first choice is just for reducing the 
dimension. The different feature dimension of MFCC while 
considering seven and twelve coefficients are given in table II 
and III. 

B. Rhythmic Content Features 

Rhythmic content features characterize the movement of 
music signals over time and contain such information as the 
regularity of the rhythm, beat, and tempo. For the rhythmic 
feature, beat histogram has been taken. It is a compact global 
representation of the rhythmic content of audio music. The beat 
histogram [5] can be obtained by the wavelet decomposition of 
a signal and can be interpreted as successive high-pass and 
low-pass filtering of the time domain signal. The decomposition 
is defined by 

    
[ ] [ ] [2 ]

nhighy k x n g k n= −∑                                             (12) 

   
[ ] [ ] [2 ]

n
lowy k x n h k n= −∑                                                 (13)  

where [ ]highy k and [ ]low ky  are the output of high-pass and 

low-pass filters respectively, and g[n] and h[n] are the filter 
coefficients for the high-pass and low-pass filters associated to 
the wavelet function for fourth order Daubechies wavelets 
(DW) [22]. Wavelet Transform deals with the similarity of the 
decomposed signal to the octave filter band. Once the signal is 
decomposed, the additional signal processing operation is 
required. The building blocks as shown in Fig. 4 are used for the 
beat analysis feature extraction. 

1) Full Wave Rectification: 
     [ ] ( [ ])y n abs x n=                                                   (14) 

where x[n] is the output of the wavelet decomposition at that 
specific scales. 

2) Low-Pass Filtering: 

       [ ] (1 ) [ ] [ 1]a n y n a nα α= − + −                                           (15) 

For one-pole filter with an alpha value of 0.99 which is used to 
smooth the envelope. 

3) Downsampling: 
                   [ ] [ ]b n a kn=                                                 (16) 

Downsampling the signal reduces computation for the 
autocorrelation calculation without affecting the performance of 
the algorithm. The value of k is 16.  

4) Normalization (mean removal) 
Mean removal is applied in order to make the signal centered 

to zero for the autocorrelation stage. 

 
        Fig. 3.  Mel frequency cepstral coefficients feature extraction of audio. 
 

TABLE II 
FEATURE DIMENSION OF MFCC CONSIDERING FIRST SEVEN COEFFICIENTS 

Mean Std. dev. Skew. Kurt. Cov. Total features 
7 7 7 7 21 49 

 
TABLE III 

FEATURE DIMENSION OF MFCC CONSIDERING TWELVE COEFFICIENTS 
Mean Std. dev. Skew. Kurt. Cov. Total features 

12 12 12 12 66 114 

 

 
 

Fig.4. The block diagram of beat histogram for feature extraction 
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[ ] [ ] [ [ ]]c n b n E b n= −                                            (17) 

5) Autocorrelation  

       

1
[ ] [ ] [ ]

n
cd k c n n k

N
= −∑                                           (18) 

where c[n] is periodic signal with period  N.   
6) Periodicity detection and beat histogram calculation: 

There are six different features extracted from the beat 
histogram. They are relative amplitude of the first and second 
histogram peak, period of the first and second histogram peak 
measure in beat per minute (bpm), ratio of the amplitude of the 
second peak divided by the amplitude of the first peak, and 
overall sum of the histogram. 

IV.  CLASSIFIER 

Traditionally, all the parameters of the feed-forward 
networks need to be tuned and thus there exists the dependency 
between different layers of parameters (weights and biases). In 
particular the gradient descent-based methods have been used in 
various learning algorithms of feed-forward neural networks 
[23]. However, the weakness of this kind of learning method is 
that it is generally very slow due to diverse learning steps and 
may easily converge to local minima. They also require many 
iterative learning steps in order to obtain better learning 
performance. 

ELM [24] resolves the problem associated with the 
gradient-based algorithm by analytically calculating the optimal 
weights of single-hidden layer feed-forward neural networks 
(SLFNs). Where the weights between input layers and the 
hidden layer biases are arbitrarily selected and then the optimal 
values for the weights between the hidden layer and output layer 
are determined by calculating the linear matrix equations. 

ForN distinct samples and Nɶ  hidden nodes, the activation 
function g(x) of the SLFN neural network is defined as 

   1
( . ) , 1, .....,

i

N
g w x b o j Ni i j i jβ

=
+ = =∑

ɶ

                       (19) 

where 1 2[ , ,.., ]Ti i i inw w w w=  is the weight vector connecting 

the ith hidden node and the input nodes, 1 2[ , , .., ]Ti i imiβ β β β=  

is the weight vector connecting the i-th hidden nodes and output 
nodes, and bi is the threshold of the i-th hidden node. wi.xj 

denotes the inner product of wi and xi. 

The standard SLFNs with Nɶ hidden nodes with the 
activation function g(x) can approximate these N samples with 

zero error means that 
1
|| || 0

N

j jj
o t

=
− =∑

ɶ

i.e., there exist iβ , 

wi, and bi such that 
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                              (20)   

where tj is the target vector of the j-th input data. Equation (19) 
can be written as a matrix equation to form a new equation by 
using the output matrix of the hidden layer H. 

         H Tβ =                                                                        (21) 

where 
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N N
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From the above equation (21), the target vector T and the 
output matrix of the hidden layer H can comprise a linear 
system. Thus, the learning procedure of the network helps to 
find the optimal weight matrix β  between the output layer and 

the hidden layer β  can be determined by using the 

Moore-Penrose generalized inverse of H. 

                 
†ˆ THβ =                                                             (24) 

From the above equation (24) we can draw the following 
important properties. The first one is that we can take minimum 

training error, because the solution †ˆ THβ =  is one of the 

least-square solutions of the general linear systemH Tβ = . In 

addition, the optimal βɶ  is also minimum norm among these 

solutions. Thus, ELM has the best generalization performance 
compared to the typical back propagation network. In summary 
the ELM algorithm can be summarized as follows. 
   Algorithm ELM: For the given training set 

{( , ) | , , 1,..., },n mx t x R t R i Ni i i iℵ = ∈ ∈ = activation function 

g(x), and hidden neuron number ,Nɶ  
1) Assign random input weight wi and bias bi, 

i=1,…, .Nɶ  

2) Calculate the hidden layer output matrix H. 
3) Calculate the output weightβ : 

†ˆ THβ =  

 Where
†H is the Moore-Penrose generalized inverse of hidden 

the layer output matrix H. 
 

A. Bagging Algorithm 

Bagging [25] is a well-known ensemble learning algorithm that 
has been shown to be very effective in improving generalization 
performance compared to the individual base models. Breiman 
indicated that bagging is a smoothing operation which turns out 

 
Fig. 5:  Block diagram of music genre classification  
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to be advantageous when aiming to improve the predicative 
performance of regression or classification. It is a “bootstrap” 
ensemble method that creates bags for its ensemble by training 
each classifier on a random redistribution of the training set. 
Each classifier's training set is generated by randomly drawing, 
with replacement; many of the original samples may be repeated 
in the resulting training set while others may be left out. Each 
bag classifier in the ensemble is generated with a different 
random sample of the training set. The algorithm then applies a 
base classifier to classify each bag. Bagging is almost always 
more accurate than a single classifier. Finally the decision is 
taken by majority voting of all the base classifier results. Fig. 5 
shows the overview of genre classification. Our base classifier is 
ELM. 
The Bagging Algorithm 
Inputs: Training set S, based classifier L, integer T (number of 
bootstrap sample) 

for i = 1 to T { 
Si=bootstrap sample from S (i.i.d. sample with 
replacement) 
Ei=L(Si) } 

*

: ( )
arg max( ) 1

i E x yiy Y
E x

=∈
= ∑  (the most often predicated label y) 

Output: Compound classifier *E  

V. EXPERIMENTAL SETUP AND DATA PREPARATION 

Different datasets widely used for music genre classification 
are employed for performance comparison. The first dataset 
(GTZAN) consists of 1000 songs over ten different genres: 
Classical, Blues, Hiphop, Pop, Rock, Gazz, Reggae, Metal, 
Disco, and Country. Each class consists of 100 songs having 
duration of 30s. The dataset was collected by Geroge 
Tzanetakis [26]. Each song in the database was stored as a 
22050Hz, 16bits, and mono audio file. The second dataset is 
ISMIR2004 [27] which were used in the Music Genre 
Classification Contest 2004. This dataset has an unequal 
number of distributions of music tracks in each class. It consists 
of six different classes: Classical, Pop and Rock, Metal and 
Punk, Electronic, World, and Jazz and Blues respectively. This 
dataset consists of 1458 music tracks in which 729 music tracks 
are used for training and the other 729 tracks for testing. The 
audio files are stored in MP3 format having a sampling 
frequency of 44.1 kHz, 128-kbps, 16 bit, and stereo files. For 
our research, each stereo MP3 file was first converted into a 
44.1 kHz, 16 bit, mono audio file before feature extraction. In 
summary, the music tracks used for training/testing include 
320/320 tracks of Classical, 115/114 tracks of Electronic, 26/26 
tracks of Jazz/Blues, 45/45 tracks of Metal/Punk, 101/102 
tracks of Rock/Pop, and 122/122 tracks of World music genre. 

 A five-fold cross validation scheme is used to evaluate the 
performance of the proposed system in the GTZEN dataset 
whereas in order to compare our proposed method with the 
results from the ISMIR2004 Music Genre Classification 
Content, our experiment on the ISMIR2004 genre dataset used 
the same training and testing set as in the contest. In the contest, 
the classification performance is evaluated based on 50:50 

training and testing set instead of five-fold cross validation. 

VI.  RESULT AND ANALYSIS 

At first, in order to reduce the dimensionality of the extracted 
feature set, the normalized standard deviation of each timbral 
texture feature is calculated in both the GTZAN and 
ISMIR2004 dataset. As the number of timbral texture feature 
increases the dimensionality of the extracted feature set 
increases rapidly, therefore we removed the relatively less 
important features by checking the corresponding normalized 
standard deviations.  Table IV and V contain the average 
normalized standard deviation of the GTZAN and ISMIR2004 
datasets. The data seen in table IV indicates that flatness and 
rolloff are less significant for genre classification than the other 
four in FG1. A similar approach is also applied for SG2 of 
MFCC coefficients. There is only one MFCC coefficient which 
has a relatively small value of normalized standard deviation. 
Aside from that coefficient, the remaining twelve coefficients 
are useful for genre classification.   

The genre classification result of the GTZAN and 
ISMIR2004 datasets is shown in table VI and VII respectively. 
Several experiments have been conducted among the different 
feature sets. The first experiment was conducted within timbral 
texture features in FG1 like spectral centroid, flux, energy, and 
zero crossing for genre classification (excluding MFCC). The 
second and third experiments were only conducted for SG2 with 
seven and twelve mel-frequency cepstral coefficients (feature 
dimension shown in table II and III respectively).  The fourth 
and fifth experiments only considered mean, standard deviation, 
skewness, and kurtosis of timbral texture feature including 
seven and twelve MFCC coefficients separately with the 
rhythmic content feature. The final experiment was conducted 
taking the covariance matrix and all other features. The 
experiment was performed into two different steps to find the 
classification accuracy in regard to minimum (seven MFCC 
coefficients) and maximum (twelve MFCC coefficients) feature 
dimensions considering mean, standard deviation, skewness, 
and kurtosis. 

The combination of different feature sets gives different 
classification accuracy. The feature extracted from FG1 of 
energy, centroid, flux, and zero crossing gives 68.33 % of 
accuracy. Similarly, SG2 (MFCC feature sets) with seven and 

TABLE IV 
NORMALIZED STANDARD DEVIATION OF TIMBRAL TEXTURE FEATURES 

(EXCLUDING MFCC) 

E n ergy Ce n tro id F lu x Z er o c ros sing F la tn es s Ro llo f f

N o r .S td 1 .0 8 5 0 .6 9 0 0 .8 8 6 0 .6 7 1 0 .2 3 9 0 .2 7 4

 
TABLE V 

NORMALIZED STANDARD DEVIATION OF MFCC 

MFCC Coefficients 1 2 3 4 5 6 7

Normalized Standard  Deviation 2.03 2.31 2.36 2.43 2.49 2.38 2.43

MFCC Coefficients (contd.) 8 9 10 11 12 13

Normalized Standard  Deviation 2.24 2.28 2.48 2.29 1.60 0.02
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twelve coefficients give 64.62% and 66.26% accuracy 
respectively.  This experimental result shows that seven or 
eleven coefficients of MFCC do not make a big difference in 
genre classification. We also tried to find out the overall impact 
of classification accuracy with covariance components. The 
classification accuracy of GTZAN dataset without covariance 
components comes around 78.26% (7-MFCCs) and 80.21% 
(12-MFCCs) respectively. Among them, maximum accuracy is 
obtained while combining the covariance components with 
other feature sets. The classification accuracy of the GTZAN 
dataset increases from 80.21% to 85.58% while including 
covariance components. Similarly, ISMIR2004 classification 
accuracy also increases from 81.53% to 86.46%. Hence, 
covariance components had significant impact in improving the 
genre classification.  

 

In our approach, the extreme learning machine combined 
with bagging algorithm is used for the classification of the music 
genre. Before we applied the ELM with bagging as a classifier, 
we attempted to find out how many bags were needed to obtain 
maximum classification accuracy. There were twenty three bags 
combined in case of the GTZAN dataset to get maximum 
classification as shown in Fig.6. In the ISMIR2004 dataset 
maximum classification accuracy was achieved when twenty 
five bags were used as shown in Fig.7. 

Table VIII compares our proposed method with other 
approaches in terms of average classification accuracy in the 
GTZAN dataset. It is clear that our proposed method achieves 
the classification accuracy of 85.15% which is better than other 
approaches. Similarly, Table IX shows the comparison results 
with previous different approaches as well as the ISMIR2004 
Music Genre Classification Contest. The classification accuracy 
is 86.46%. It is also comparatively competitive with 

Chang-Hsing Lee’s method [26] and better than all other 
approaches including the ISMIR Music Genre Classification 
Contest (classification accuracy 84.07%) shown in table IX. 

 

TABLE VI 
CLASSIFICATION ACCURACY (CA) OF GTZAN DATASET IN DIFFERENT FEATURE 

SETS 

Feature set ELM(CA)

Energy+Centroid+Flux+Zerocrossing 68.33%

MFCC (7 coff) 64.62%

MFCC (12 coff) 66.26%

[ECFZ+MFCC, 7 coff.] [without covariance]+beat histogram 78.26%

[ECFZ+MFCC, 12 coff. ] [without covariance]+beat histogram 80.21%

[ECFZ+MFCC , 7 coff.] [with covariance]+beat histogram 84.52%

[ECFZ+MFCC, 12 coff.] [with covariance]+beat histogram 85.15%
 

TABLE VII 
CLASSIFICATION ACCURACY (CA) OF ISMIR2004 DATASET IN DIFFERENT 

FEATURE SETS 

Feature set ELM(CA)

Energy+Centroid+Flux+Zerocrossing (ECFZ) 73.62%

MFCC (7 coff) 66.58%

MFCC (12 coff) 68.78%

(ECFZ+MFCC (7 coff.)) (without covariance)+beat histogram 79.65%

(ECFZ+MFCC (12 coff.)) (without covariance)+beat histogram 81.53%

(ECFZ+MFCC (7 coff.)) (with covariance)+beat histogram 85.15%

(ECFZ+MFCC (12 coff.)) (with covariance)+beat histogram 86.46%
 

   
Fig. 6: Number of bags Vs classification accuracy of ZIGEN dataset. 

TABLE VIII 
COMPARISON OF CLASSIFICATION ACCURACY WITH OTHER APPROACH OF 

GTZAN DATASETS (OUR APPROACH BASED ON FIVE-FOLD CROSS  
VALIDATION  

Reference CA 

Our approach  85.15% 

Jin S. Seo [11] 84.09% 

Bergstra et al [9] 82.50% 

Li et al.[1] 78.50% 

Tzanetakis [5] 61.00% 

 
TABLE IX 

COMPARISON OF CLASSIFICATION ACCURACY WITH OTHER APPROACH OF 

ISMIR2004 DATASETS  

Reference CA 

Our approach (ECFZ+MFCC+beat histogram) 86.46% 

Chang-Hsing Lee[10] 86.83% 

Jin S. Seo [11] 84.90% 

Pampalk et al. [12] 84.07% 

Bergstra et al [9] 82.34% 

Our approach (ECFZ+MFCC+beat histogram) 86.46% 

 

Fig.7: Number of bags Vs classification accuracy of ISMIR2004 dataset. 
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To get a better picture of the classification accuracy of an 
individual music genre, the confusion matrices are given. The 
confusion matrix is n x n matrix, at which each column of the 
matrix represents the instances in a predicted class, while each 
row represents the instances in an actual class. The diagonal 
entries of the confusion matrix are the rates of music genre 
classification that are correctly classified, while the off-diagonal 
entries correspond to misclassification rates.   

Table VIII shows the confusion matrix of the GTZAN 
dataset. The genres are arranged in the order of Classical (Cl), 
Blues (Bl), Hiphop (Hi), Pop (Po), Rock (Ro), Jazz (Ja), Reggae 
(Re), Metal (Me), Disco (Di), and Country (Co) respectively. 
Similarly, Table IX shows the confusion matrix of genre 
classification of the ISMIR2004 dataset. The genres are 
arranged in the order of Classical (Cl), Pop and Rock (P&R), 
Metal and Punk (M&P), Electronic (Ele), World (Wo), and Jazz 
and Blues (J&B) respectively. 
Form the confusion matrix of the GTZAN dataset; we can see 

that some music genres are classified with significant accuracy 
like Classical, Pop, Metal, and Reggae. Except for Rock, other 
music genre classification rates are also competitive. Rock 
music has a minimum classification rate. It is confused with 
Metal. Beside this, it is diverse in nature as compared to other 
genre and also overlaps its characteristic with other genres. 
Music genre Disco and Country are also confused with Reggae 
and Metal respectively. 
Similarly, Table XI shows the confusion matrix of the 
ISMIR2004. The classification rate of Classical, Pop and Rock, 
and Electronic are significant. Genres like Jazz and Blues, and 
World are also relatively better than Metal and Punk. The 
World music is diverse in nature, so it is confused with Classical 
and Pop and Rock. Genre like Jazz and Blues are also confused 
with Classical. Among the six genres, Electronic has minimum 
classification rate as compared to others. 

VII.  CONCLUSIONS 

In this paper, first we analysed the validity of timbral texture 
features. The validity criterion is determined by the normalized 
standard deviation of each feature. In the second stage, the 
frame-wise features have been integrated by using central 
moments including mean, standard deviation, skewness and 
kurtosis. Also, we propose the covariance components between 
timbral texture frame-wise features to be included for improving 
the classification performance. By considering these feature 
values, several experiments have been performed separately to 
analyse classification accuracy among the different feature sets. 
The ELMs combined with bagging is used to build the classifier. 
The ELM is an unstable classifier; therefore ELMs with bagging 
improved the classification accuracy as well as the 
generalization performance.  

The classification accuracy of both datasets (GTZAN and 
ISMIR2004) is shown in table IV and V, respectively. 
According to our proposed method, the classification accuracy 
of 85.15% is achieved in GTZAN datasets. The experimental 
results on the ISMIR2004 genre datasets have also shown that 
our proposed approach achieves higher classification accuracy 
(86.46%) than the ISMIR Music Genre Classification Contest 
with classification accuracy (84.07%) competitive with 
Chang-Hsing Lee (86.83%).   

Experimental results show that there are no significant 
differences seen while considering seven and twelve MFCC 
coefficients for genre classification. It concludes that the 
minimum feature dimension is also sufficient for music genre 
discrimination. In addition, our experiment shows that 
covariance components have a significant impact in improving 
the genre classification. By adding the components we could 
improve approximately 5% of the overall accuracy. We expect 
that a more accurate classifier can be constructed with more 
features added such as segment-based ones after partitioning 
audio data into pieces, even though it increases the complexity 
of the classifier. 
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